生活中,人们往往在意他人的看法,然而,有时我们要做成一件事,又应该不要太在意他人的看法。对此你有怎样的认识?请写一篇文章,谈谈你的思考。
要求:(1)自拟题目;(2)不少于800字。

此题为2019年上海市闵行区高三一模作文题。

在生活中与人交往,常常听到他人的看法。有人十分在意这些看法,将之视为自己的行为准则,也有人不以为然,毫不顾忌地做自己的事。如何看待这些他人的看法,无疑十分重要。要做的,就是不盲目地对待这些看法。
人在社会中生存,与人交往,在交往过程中旁人会对自己的言行进行评价,并由此产生了看法,这些看法是自我评价的重要方式,因为许多的人生价值的实现需要在社会中才能实现,也只有得到了他人的认可才能够真正实现。如果自己的行为只是基于自己意愿的成就,而不考虑他人的评价,被他人不认可甚至鄙夷,这种实现就不能成为真正的实现。通过他人的负面看法,人就有可能改变行为的错误之处,发现自己的疏漏之处,通过他人正面看法,人就会感受到认同感,对自己所做的事更有信心与成就感,激励自己做事更认真。
然而对自己成就的评价并不仅仅只有他人的看法,在做事时将他人评价视为金科玉律,就会使自己做事受到束缚。
自我评价有局限,他人的看法也有局限。他人之言并非一人之言,而是千万人之言,由于不同人的价值取向不一致,看法也不免千差万别,自相矛盾。如果听到一人之言就盲目做出改变,就可能面对父子携驴出行时的尴尬。
太在意他人的看法,更是对自己做好一件事的压制。一方面,他人的看法不一定全部出自善意,在意这些看法做事,盲目地听从,全然不经思考与质疑,就会被人玩弄于股掌之中,丧失自主性,变成他人的工具,难以成事。另一方面,那些动机为善的看法未必带来好的结果,太在意这些看法,就会在他人的善意中畏手畏脚,依赖这些善意。这些丧失了革新勇气的人不敢越雷池半步,永远无法知道这些动机为善的看法是否真的结果是最好的。
在社会上做事,如果太在意他人的看法,盲目服从,就丧失了自主性,成为了他人的工具,不再是自己了,变为了他人的外延。丧尸般地服从他人的看法,或许这样会免除自己做事失败的风险,但也同时会丧失与风险并存的做好一件事的成就,更会丧失自己独立思考的能力,没有了他人的看法无法做事,被抹去未来做事的可能。
尽管太在意他人看法对做事有害,但这并不能成为忽视他人看法,固执己见的理由。他人的看法就如同生长素这种植物激素,不在意与太在意都对做事无益,他人的看法可能成为做事时的指引与警示,也可能成为丧失自己主动性的开始。这恰恰说明了对待他人的看法要有自己的意志参与。不能盲目接受,亦不可盲目忽视。他人的看法是一个集合,其中的元素是一个个个体的不同的看法。要主动地归纳分类,不在意的那些具体的元素,在意的是从整体上分析得出的看法,加以接受,做出改变。
我们的目标是做事而非谄媚他人,对待他人的看法也要从其对做事的关系出发进行分析,采纳那些好的对做事有益的看法,忽视那些阻碍做事的看法,对那些暂时无法确定的,保留下来做事的深入之后再行处理。
我们身边不乏一些听风便是雨的,依赖他人的看法的人,也有着油盐不进的人,这二者对待他人的看法看似矛盾,实际都是盲目的行为的结果。对待看法,我们不能忘记自己的初心,不盲目地接受他人的看法。
以下为吐槽和原稿

阅读全文 »

原文有幸被学校微信公众号推送:
https://mp.weixin.qq.com/s/mz-VzWp2637TcPKCgVAjFg
这里在推送的文章上做了一些修改。

  突如其来的疫情使得不少人的生活节奏慢了下来,却让不少的公权力与私权力的矛盾显现了出来。

  在中国,法的历史极为悠久,但今天中国的法却与过去的法家思想有着许多不同。过去中国的法对于私权力有着极其的限制,儒表法里,统治者借助法律进行控制,百姓只拥有法律所规定的权力,而对于统治阶级却没有什么约束作用。
  这种思想延续到了现在,不少人仍有着这样的认识,对于自己手中的公权力不加限制地加以运用,有着“刑不可知,则威不可测”的思想。另一方面,欧洲的“天赋人权”等思想传入中国,而传统的中国对法的认识却多含人治,这让不少人觉得自己的权力被限制,不再相信相关机构的处理,而诉诸私刑。

  在古籍中常常看到这样的故事,判案的官员根据情况肆意判案,而不根据法律,虽然那些“恶法”不应当被遵守,但是这种十分主观的的判案实际上将“法治”变为了“人治”,判案的官员获取了本不应属于他的权力。虽然这样的事件现在已不多见了,但是在相关的处理当中很多相关人员却误将网络上的呼声当作“民意”,没有注意到“沉默的大多数”的存在。犹记得之前一位公务员因为在朋友圈晒出吃狗肉的照片被一些“爱狗人士”曝光到网络上,相关单位竟以此为由对其进行了处罚,而不顾相关法律法规的存在。
  一来在网络上发声的人看似众多,但仍然只是整个社会中的一小部分人。二来法律要听从民众的呼声,但是也要超越民众的偏见。雅典的公民大会有着百分之十几的公民参与度,却因而造成了不少的多数人的暴政。如果社会治理只用考虑民意,还要什么法律呢?大家直接在互联网上投票不就可以了吗?当法律对民众行为的约束不再明确,用事后法处罚人,民众就难以对未来有合理的预期,在惶惶不可终日中度过。

  同时,还有一些人滥用手中的公权力,这在疫情之中有着明显的体现。一些人将道德要求视为了强制要求,更是以防疫为名肆意妄为。在私人的家宅中娱乐是违背了哪一条法律?相关人士又有从何而来的打砸他人财物的权力?但最后事件的结尾也不过是道歉罢了。对于公权力的越界如果总是不能得到严格的处罚,总以“好心办成坏事”作为借口,就会有人敢于不断地尝试扩展自己的公权力。
  如果没有法律,人们还是能够根据心中的判断对那些为非作歹的人进行处罚,但公权力却可以狐假虎威第在社会良俗的幌子下肆意妄为而不会被约束。法律的存在对民众的行为加以限制的同时也在限制公权力,将公权力放进笼子里。历史上不乏不受约束的公权力让掌控者的内心的私欲无限地释放的例子,这都给民众带来了灾难,所以对公权力要加以限制,避免掌控者内心私欲的释放。

  公权力没有得到极好地管控,实际上损害的是政府的公信力。一次次地公权力越界,道歉,让人们不相信法制能带来公平,就必将滋生私刑,也会使社会变得更容易慌乱。疫情过后,如果再在网络上看到SARS再现,会有多少人相信呢?公信力下降会带来更多的谣言,当人们发现辟谣也是谣言时,阴谋论一类的信息就会不胫而走。

  与此同时,不少人也对私权力有了不合适的理解。英国针对疫情做出了“佛系”的应对姿态,鲍里斯说出了“做好失去亲人的准备”这样的话。有人说这是因为诸如韩国、意大利那样的对民众的管制招致了各式各样的表面不违背管制,实质是反对限制的对于权利的宣誓的各类活动,所以英国用不管控的语言让人们不敢于出门,从而达到隔离的效果。我不知道这时候真的是其如此应对的原因,但难道我们真的因为有这些私权力就要去全部使用吗?
  电影辛德勒的名单中主人公为了从纳粹军官手中救人,告诉他权力不是想做什么就做什么的权利,而是有拒绝的权利。香港的那些人有游行的权利吗?有。但是真的只有通过游行才能表明权利,仿佛没有游行示威就没有权利吗,以至于事件在别用用心的人的影响下不断扩大吗?

  中国古代没有公权与私权的区分,从清末开始中国长期在风雨中飘荡,在新的旧的思想的轰击下,不同的人对此有不同的理解。在疫情中暴露出了社会治理的诸多问题,这是好事。这是一次危机,是一次压力测试,也是认识这个社会的好时候。

推送的原文如下:

突如其来的疫情使得不少人的生活节奏慢了下来,却让不少的公权力与私权力的矛盾显现了出来。

阅读全文 »

一天遇到了一道题
点击图片查看大图

思考半天也不知道第三小问怎么做,幸好首项只有36种可能,枚举了[1,17]中的奇数就算出了答案,老师讲评时也用了枚举法算的,还画出了这幅图,让我有了一种图论题的感觉。

老师又让我们思考36改为其他数值的情况,然而我并不能想出来,又想到仿佛可以用图的方法做,于是就写了一段算了一下。结果如下:

这有什么规律吗?去问了老师,结果老师回复

是我想太多了。

好久没做过题了,也比较懒,数据量也不大,就比较暴力了,代码如下:

阅读全文 »

此文使用了mathjax,请等待公式加载

原题

起因是一道考试时遇到的题

设$n=\overline{abc}$表示一个三位数,记$f(n)=(a+b+c)+(a\cdot b+b\cdot c+c\cdot a)+a\cdot b\cdot c$,则满足$f(n)=n$的三位数个数是______。

最暴力的我做题时直接把含a的多项式和含b的多项式及c与$f(n)=100a+10b+c$的对应系数取等号联立方程,然后求出$\begin{cases}b=9\\c=9\end{cases}$,之后求出199,299,399,⋯,999共九个三位数,然而我总感觉有问题,于是写了程序检验了一下,发现$f(n)\leq n$,最后想了好久证明了出来。
如下:
$f(n)-n \
=(a+b+c)+(a\cdot b+b\cdot c+c\cdot a)+a\cdot b\cdot c-(100a+10b+c)\
=a(1+b+c+b\cdot c)+b(1+c)+c-(100a+10b+c)\
=a(1+b+c+b\cdot c-100)+b(1+c-10)\
\leq a(1+9+9+9*9-100)+b(1+9-10)=0$
当且仅当$b=c=9$时等号成立

升级

上课老师讲课时化为了$f(n)=(a+1)(b+1)(c+1)-1$进行计算。
然后我就想如果是其他位数时,也满足这个条件吗?
检验呢一下发现int范围内都符合,当且仅当除最高位都为9时等号成立。
想了好久证明,觉得可以用数学归纳法如下:
命题:$(a₁+1)(a₂+1)(a₃+1)\dots (aₙ₊₁-1)\leq \overline{a₁a₂a₃⋯aₙ}$对$n \in N^*$且$n \geq 2 $ 恒成立,当且仅当$a₂=a₃=⋯=aₙ=9$时等号成立,$a₁,a₂,a₃ ⋯ aₙ ∈ \{0,1,2,3,4,5,6,7,8,9\}$
当$n=2$时,$(a₁+1)(a₂+1)-1-(a₁*10+a₂)=a₁a₂+a₁+a₂-10a₂-a₃=a₁(a₂-9) \leq 0$,当且仅当$a₂=9$时等号成立
假设当$n=k \in N^*$且$k \geq 2$时 $(a₁+1)(a₂+1)(a₃+1)⋯(aₖ+1)-1 \leq \overline{a₁a₂a₃⋯aₖ}$成立且当且仅当$a₂=a₃=⋯=aₖ=9$时等号成立
当$n=k+1$时,
$(a₁+1)(a₂+1)⋯(aₖ+1)(aₖ₊₁+1)-1- \overline{a₁a₂a₃⋯aₖ}\
=(aₖ₊₁+1)[(a₁+1)(a₂+1)⋯(aₖ+1)-1+1]-1-10* \overline{a₁a₂a₃⋯aₖ}-aₖ₊₁\
=(aₖ₊₁+1)[(a₁+1)(a₂+1)⋯(aₖ+1)-1-\overline{a₁a₂a₃⋯aₖ}] +(aₖ₊₁-9)\overline{a₁a₂a₃⋯aₖ}\leq 0$
当且仅当$a₂=a₃=⋯=aₖ=aₖ₊₁=9$时等号成立
所以$(a₁+1)(a₂+1)(a₃+1)\dots (aₙ₊₁-1)\leq \overline{a₁a₂a₃⋯aₙ}$对$n \in N^*$且$n \geq 2 $ 恒成立,当且仅当$a₂=a₃=⋯=aₙ=9$时等号成立,$a₁,a₂,a₃ ⋯ aₙ ∈ \{0,1,2,3,4,5,6,7,8,9\}$

阅读全文 »

图片
涉及的链接:
https://github.com/neruthes/neidi-renmin-zhiyuanjun-xianzhang/blob/master/%E5%86%85%E5%9C%B0%E4%BA%BA%E6%B0%91%E5%BF%97%E6%84%BF%E5%86%9B%E5%AE%AA%E7%AB%A0.md
https://github.com/neruthes/zhao
https://neruthes.xyz/
https://twitter.com/neruthes
https://cybernations.fandom.com/wiki/Communist_Party_of_CyberNations
https://maskbook.com/
https://ccphq.org/
https://thewesttimes.com/?lang=en
https://zhuanlan.zhihu.com/p/113072138
https://www.zhihu.com/people/c3ea1d88feb5
https://www.uscyberpatriot.org/Pages/About/What-is-CyberPatriot.aspx
https://twitter.com/TheWestTimes
https://ccphq.org/

阅读全文 »

本文为转载,原文链接:https://mogeko.me/2020/077/
采用知识共享署名 - 非商业性使用 4.0 国际许可协议进行许可
译者:Mogeko
原文作者:Neruthes
原文链接:China Will Not Save Europe

题图

翻译了《西方时报》3 月 15 日发的一篇社论,目的是给大家提供一些不一样的思路,不代表我的政治观点和立场。

现在 (新冠病毒) 正式在全球全球范围内大流行。世卫组织周三宣布,COVID-19 是一种大流行病 (pandemic),并指出在过去 2 周中,中国境外病例数激增了 13 倍。世卫组织总干事特德罗斯 (Tedros Adhanom Ghebreyesus) 说,目前,在 114 个国家中有超过 118000 例 COVID-19 病例,死亡 4291 人。

为意大利提供帮助,为英国加油

尽管意大利针对中国人以及别的 (疫区) 公民采取了诸多种族主义行为,中国外交部部长王毅仍在电话中与意大利 (的相关官员) 进行了交谈,并承诺派遣医疗专家和援助医疗物资来帮助意大利。然而,在同一天,王毅也在电话上与英国 (的相关官员) 进行了交谈,并对英国的医疗保障能力表示赞许,同时他表示相信英国政府能够对疫情进行有效的管理。这种比较就非常有趣了。

中国以其全球领导力和无所不在的人道主义而闻名。中国可能可以拯救意大利,但中国无法拯救整个欧洲。中国不相英国提供援助的原因可能有很多,但意大利获得援助的主要原因可能是因为意大利是「一带一路」倡议的成员之一。

英国最近是否在某种程度上冒犯了中国?答案大概是否定的。尽管英国在 2018 年陷入了南海纠纷,但那已经是 2 年前的老黄历了。相反,面对美国施加的巨大压力,英国政府仍然坚持不将华为排除在英国的 5G 项目之外。

可以想象中国将如何回应丹麦政府的请求。

如果一个国家需要这种最后手段的人道主义援助,他可以尝试接纳更多的中国人移民。除了玩笑,中国的人道主义援助可能涉及别的许多因素。

没有附加条件吗?

认为中国的人道主义援助是无私的,不会附带别的政治条件是天真幼稚的想法。

作为「一带一路」倡议的一部分,中国对非洲的政策中,特别强调:中国只寻求没有附加政治条件的商业合作。他们为什么要强调这一点?因为以前发达国家的援助中,或多或少都会附带一些政治条件,比如政府改革、允许外国投资者直接开采自然资源 (开矿权) 等… 中国的政策专家既不愚蠢也不仁慈。中国对非洲国家采取只谈商业不谈政治的态度是因为非洲国家可以选择别的 (发达国家的) 投资者。如今,欧洲国家没得选,而一直声称自己拥有世界上最好的医疗保障系统的英国正准备放任病毒流行,以期获得「群体免疫」。另一个「马歇尔计划」(获得美国的援助)?别开玩笑了;美国甚至无法提供足够的检测试剂盒供国内消费,那可是奉行「美国第一」(America-First) 政策的美国啊。

至关重要的是,无法独立控制疫情的欧洲国家目前只能求助于中国,而中国却不像他通常表现的那样友好。他们正寻求除金钱以外的别的回报。

如果一个国家没有大量的中国侨民,在外交上与中国关系不大,没有可以租借给中国使用 99 年以上的商业港口,并且还不能在人民币国际化中发挥重要作用,为什么中国要费心费力地为这个国家提供帮助呢?(更何况) 还有一些拥有特殊国家利益的国家,例如朝鲜和巴基斯坦?中国是一个负责任的大国,但中国从不是一个慷慨 (不求回报) 的国家。中国必须有所选择。中国有个成语,「地主家也没有余粮」。中国的防疫用品生产力可能很高,目前可以达到每天生产 2 亿只口罩,但它肯定不能满足每一个国家的需求。

中国的欧洲政策

从地缘政治的角度来讲,中国的欧洲政策可以概括为:「胶而助之,分而治之」(glue and help; divide and rule)。

中国无意解散欧盟,因为它需要一个强大的欧盟来平衡美国和俄罗斯,但它也不希望一个像中国一样统一且强大的欧洲。最好是让所有人都成为彼此的敌人,而他们都是你的朋友。这种关系不仅仅存在于欧洲内部,还存在于美国、欧洲和俄罗斯之间。如果欧洲太弱,中国会帮助其巩固;如果欧洲太强,中国则会干涉地区事务,使其产生遐心。

接下来的几十年中,中国将会越来越有兴趣在欧洲建立准军事组织,以维护海上丝绸之路的安全,这是欧印战略 (Euro-Indian strategy) 的一部分 (确实是个好笑的名字),无论它是否承认。

瑞士与中国的雄心

最近,欧洲国家间发生了不少冲突。据称德国和意大利截获了本应属于瑞士的医疗用品。瑞士不是欧盟成员国,因此瑞士不可能获得欧盟内部标准的医疗援助。

有的人可能会忽略瑞士人民对于这些事态发展有多敏感。(地理上,) 瑞士作为一个小国被法国、德国和意大利这三个欧盟的核心成员国夹在中间。他们都可能拦截瑞士从中国和其他制造基地经海路进口的任何医疗物资。目前,医疗物资的对于国家安全来说比以往任何时候都要重要。瑞士是应该接受自己作为一个小国任人宰割的命运,还是应该寻求欧盟以外的伙伴关系来保护其国家安全不受欧盟朋友的侵犯?虽然中国一直奉行「不结盟」的政策,但政策的实施始终具有灵活性,中国不会受到自己政策的限制。他们将口罩和防护服运送到日内瓦和苏黎世时,可以说「这只是一些民用货物,根本没有军事合作」。瑞士可以在不损害瑞士的永久中立政策的前提下接受中国的援助,而后者可以让瑞士避免因为自己的「欧盟好邻居」而使得流行病大规模爆发。

在与德国发生两起纠纷后,我们将可以看到瑞士如何加强与中国的联系。猜猜哪些航空公司将因其与中国的物流联系而受到瑞士政府的青睐?

像中国一样团结

现在的欧盟乱成一团。成员国之间相互发表出口禁令。思路很简单。如果疫情被控制在一个地方,那么其他地方将无需应对 (疫情)。供给给疫区的物品 (按照这个逻辑应该是指普通商品) 越晚,疫情就越难以传播到外部。

更具讽刺意味的是,在中国 —— 一个经常被西方人歧视的国家 —— 情况却恰恰相反。其他省份为湖北提供了巨大的帮助;湖北的每一个城市都从相应的省获得了全面的医疗援助。动员了数千名医生来抗击疫情。中国人民团结起来。中国人民 (主动) 参与流行病控制,在欧洲这完全是行不通的,甚至是白日梦。现在,谁才是真正的病夫?

除非欧洲像中国那样团结,否则欧洲只能追求而不能实现「真正的欧盟」(a common identity or a common interest)。否则,一旦危险来临,欧洲的合作将会崩溃,而后欧洲国家 (又不得不) 单独向中国寻求帮助。

阅读全文 »

这是几年前去哈佛的记录的一部分。

Part 1 戏精退化之路(特)

*TIPS:以下为背景介绍。
第一程(From 上海 To 底特律)一开始很正常,然后拿出手机看完《人民币》后写完政治作业,基本上飞到和北海道同纬度的时候就睡了,之后醒来,再睡,一直循环到从阿留申群岛到阿拉斯加再入境加拿大,最后就剩1小时时才彻底清醒。
第二程(From 底特律 To 波士顿)从计划的4点多一直延误到6点多(下雪),本身计划要用3个小时写作业,然而上了飞机就睡觉。刚睁眼,就发现已经降落了。在飞机到酒店的大巴上也是基本睡过去的。
Day 1早上起来opening ceremony 就是完全听不懂的。参观哈佛就拍了几张照,介绍就听明白有一个图书馆是和泰坦尼克有关的。下午上课用了10分钟等人,然后讲了我能听懂(映射)&学过的(子集个数)集合知识,接下来是老师独白,完全听不懂,之后开始讲pi(8pi-pi=21.99约等于22=》pi=22/7,然后吹了一波古代中国人),过了几分钟又跳回去讲集合,又跳到了排列组合,大概半小时之后就完全听不懂了,老师的板书直接升级为天书。最后撑到最后10分钟还是睡了。(房间本身就昏暗,空调又像不要钱地开)之后的research paper 的课上在听不懂的主要障碍下,当PPT上的字由一页三四行变为十多行的情况下,加之电脑没电,于是又睡了。

以下为正文。
从初中的从来上课不睡,到后来高中刚开始强忍不睡,最后在一节地理课睡了开头,最后就是偶尔睡。从一开始的假装我不困,一本正经地上课到后来只在老师看是才演。
Now,opening ceremony时还可以保证一本正经,虽然啥也听不懂,但是装出很认真的样子。下午开始装出听懂了,我不困的样子,再到我就睡了,不演了。

Part 2 不知道上的什么课

第一节课:[13:00-15:59] THS 1: Section 3: Thesis Seminar (Tuesday)Location: Sever 208Read example paper in your track (listed at go.hauscr.org/red-handbook), take notes and write down which parts you liked or disliked. Come prepared with questions/comments for the Research Orientation workshop in the evening. This should take at least 60 minutes, and if you have extra time you can begin brainstorming for your own paper and writing down ideas.
第二节课:[14:30-15:59] MATH 23C: Mathematics for Computation, Statistics, and Data ScienceLocation: Science Center Hall AProof strategies and logic. Sets, countability, sigma fields, and axiomatic foundations of probability. Summation of series and evaluation of multiple integrals, with emphasis on calculation of expectation and variance. Abstract vector spaces and inner product spaces, with applications to analysis of large datasets. Key functions and theorems of mathematical statistics. A brief introduction to classical vector calculus as used in electromagnetic theory. Students will learn to use some of the statistical and graphical display tools in the R scripting language.

Part 3 你永远不知道你身边有谁(特)

Point 1在我上课啥也听不懂的时候,旁边两个人一个给另一个翻译,课后还一起问老师问题。

Part 4 Be brave(特)

Point 1上课过程中有一位哈佛学生举手(slowly),然后紧跟着旁边一个同学跟着举手(slowly),时间点大概位于我彻底失去方向后不久。过了很久,只听见一声大叫“question”,然后老师就解答了TA的问题。

Part 5 意料之外

Point 1 教室里没有桌子,只有椅子和一块固定在椅子上可移动的小板,别人的电脑只要把键盘放在板上即可,然而我要把屏幕的支架打开,从支架到屏幕都要放上去,每次都是小心翼翼地放和维护。
Point 2 上课,哈佛学生有教案,然而我们没有。
Point 3 The opening ceremony and the second class are full of laughing.(【Although】我啥也没听懂,【但】笑话的确很多)

Part 6 情理之中

Point 1 坐飞机后就丢了一把伞。
Point 2 下午做活动时,我记住的东西是最少的。

Part N 其他

Point 1 上午吃早饭时在群里穿看见了高晓松,然而我并没有看见。看微博仿佛没有问题,也许Day 2 能看见?

Part N+1 情景故事

Story 1 启程前说很难吃,但是还好啊。
Story 2 吃完饭出来才发现忘带了东西,在一层楼逛了好几圈才找到那间教室。

阅读全文 »